Computer Vision: Fortschritte und Herausforderungen im Jahr 2023

Computer Vision - Advances and Challenges in 2023 - Langly

Computer Vision ist ein sich rapide entwickelnder Forschungsbereich, der darauf abzielt, Maschinen die Fähigkeit zu verleihen, visuelle Informationen aus digitalen Bildern und Videos zu interpretieren und zu verstehen.

Dabei werden Techniken des maschinellen Lernens und der künstlichen Intelligenz eingesetzt, um das menschliche Sehsystem so nachzubilden, dass Computer visuelle Informationen erkennen, analysieren und interpretieren können.

„Computer Vision ist ein faszinierendes Gebiet, das es Maschinen ermöglicht, die visuelle Welt wie Menschen zu interpretieren und zu verstehen. Es hat das Potenzial, viele Branchen zu revolutionieren, vom Gesundheitswesen über das Transportwesen bis hin zur Unterhaltung.“ - Fei-Fei Li, Professorin für Informatik an der Stanford University und Ko-Direktorin des Stanford Institute for Human-Centered Artificial Intelligence.


Computer Vision ist das Forschungsgebiet, das sich damit befasst, Computer in die Lage zu versetzen, digitale Bilder und Videos zu interpretieren und zu verstehen, indem die menschliche visuelle Wahrnehmung nachgeahmt wird. Dazu gehört die Entwicklung von Algorithmen und Techniken, um digitale Bilder zu analysieren und zu verarbeiten, Informationen aus ihnen zu extrahieren und auf der Grundlage dieser Informationen Entscheidungen zu treffen. Verwandte Begriffe sind Maschinelles Sehen, Digitale Bildverarbeitung, Mustererkennung und Künstliche Intelligenz. Letztendlich besteht das Ziel des maschinellen Sehens darin, Maschinen zu entwickeln, die die visuelle Welt wie Menschen „sehen“ und interpretieren können, wobei die Anwendungen von selbstfahrenden Autos über medizinische Diagnosen bis hin zur industriellen Automatisierung reichen.

Computer Vision - Advances and Challenges in 2023 - Langly

||| Im Bereich Computer Vision wurden in den letzten zehn Jahren bemerkenswerte Fortschritte erzielt und die Genauigkeit von 50 % auf 99 % gesteigert.

Mit der Entwicklung neuer Algorithmen und Bildsegmentierungstechniken wird der Bereich des maschinellen Sehens voraussichtlich weiter wachsen. Eine der vielversprechendsten Innovationen ist das Segment Anything Model (SAM), das vom FAIR-Labor der Meta entwickelt wurde. SAM hat das Potenzial, die Industrie stark zu beeinflussen, indem es sehr detaillierte Objektmasken aus verschiedenen Eingabedaten erzeugt.

Der Segmentierungsprozess besteht aus drei Hauptschritten:

1. Bildkodierung, bei der das Eingangsbild in ein mathematisches Modell umgewandelt wird
2. Vektoraggregation, bei der die kodierten Vektoren auf mehreren Ebenen kombiniert werden
3. Schnelle Maskendekodierung, bei der auf der Grundlage der kodierten Vektoren für jedes Objekt im Bild eine eigene Maske erzeugt wird

Die Bildsegmentierung kann in verschiedene Arten unterteilt werden, z. B. semantische Segmentierung, Instanzsegmentierung und panoptische Segmentierung.

Bei diesen Arten der Segmentierung werden Deep-Learning-Modelle wie rekurrente neuronale Netze (RNN), vollständig verbundene Netze (FCN) und faltbare neuronale Netze (CNN) verwendet, um Bilder zu analysieren und in mehrere Segmente zu unterteilen. Diese Modelle helfen bei der Erkennung von Mustern und Merkmalen in Bildern, die dann zur Unterscheidung zwischen verschiedenen Regionen eines Bildes verwendet werden können.

Computer Vision - Advances and Challenges in 2023 - Langly

||| Marktforschungsergebnissen zufolge wird der weltweite Markt für Computer Vision bis 2030 einen Wert von über 41 Milliarden US-Dollar erreichen, was das enorme Potenzial dieses sich schnell entwickelnden Bereichs verdeutlicht.

Die meisten Bildsegmentierungsmodelle folgen einer ähnlichen Struktur, nämlich einem Encoder-Decoder-Netzwerk. Der Encoder verarbeitet die eingegebenen Bilddaten und wandelt sie in eine mathematische Darstellung um, die leicht bearbeitet werden kann. Der Decoder nimmt die codierten Daten und erstellt eine Segmentierungskarte, die die Position und die Grenzen jedes Objekts im Bild angibt. Auf diese Weise ist das Modell in der Lage, verschiedene Objekte im Bild zu identifizieren, selbst wenn sie sich überlappen oder komplexe Formen haben.

Das Segment Anything Model (SAM) ist eine innovative Technologie, die sowohl interaktive als auch automatische Segmentierungsaufgaben in einem einzigen Modell durchführen kann.

Die Flexibilität der SAM-Schnittstelle ermöglicht die Bearbeitung einer Vielzahl von Segmentierungsaufgaben mit einer geeigneten Eingabeaufforderung, wie z.B. Klicks, Boxen und Text.  SAM wurde auf einem riesigen Datensatz mit mehr als einer Milliarde Masken trainiert, was bedeutet, dass es neue Objekte und Bilder erkennen kann, die nicht im Trainingssatz enthalten waren.

Computer Vision - Advances and Challenges in 2023

Im Jahr 2023 werden die größten Herausforderungen auf dem Gebiet der Bildsegmentierung darin bestehen, immer komplexere Datensätze zu verwalten, interpretierbare Deep-Learning-Modelle zu entwickeln, Methoden des unüberwachten Lernens zu nutzen, Echtzeit- und speichereffiziente Modelle zu erstellen und die Grenzen der Segmentierung von 3D-Punktwolken zu überwinden.

Mit der kontinuierlichen Entwicklung fortschrittlicher Algorithmen und Bildsegmentierungstechniken, wie z.B. dem revolutionären Segment Anything Model (SAM), wird der Bereich des maschinellen Sehens in den kommenden Jahren ein erhebliches Wachstum erfahren. Es wird erwartet, dass dieses Wachstum zu robusteren Modellen und intelligenteren Anwendungen führen wird, die letztendlich zu einem besseren Nutzungserlebnis führen werden.

share this story

related articles
Langly Inc. © 2025